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Abstract-By employing an analytical procedure, the dispersion relation for axisymmetric acoustic waves
propagating a10nl the axis of a lonl composite bone has been derived in the paper by considering energy
dissiptation and bone piezoelectricity (as per previous experimental observations). The particular case, in
which the piezoelectric: effects are disregarded, is dealt with in greater detail. Numerical results for
compact bones, computed on the basis of this particularization are also presented and thereby an attempt is
made to illustrate the inlluence of dissipative material behaviour of bones on the wave propagation
characteristics. The paper conc:ludes with a discussion on the possible elt'ec:ts of bone piezoelectricity on
the basis of plane wave approximation.

I. INTRODUCTION

Studies on the waves propagating through continuous media have the potential to provide
useful techniques for the purpose of ascertaining the material characteristics when theoretical
results are correlated with the corresponding experimental findings. For osseous media such a
study offers further information regarding the pathological state, the site of fracture etc., in
addition to those related to their mechanical and electrical properties.

It is now an established fact that bone is a two-phase, fibre re-inforced composite material.
One phase is represented by the visco-elastic bonding and the second by the osteons. As early
as 1957 Fukada and Yasuda ascertained the piezoelectricity of bones, while McElhancy [I]
basing upon his experimental observations pointed out that bone exhibits viscoelastic proper­
ties. Sedlin [2] studied the viscoelastic effects of bone material by treating it as a standard linear
solid, while in a poroelastic study of bone media, Nowinski[3] confirmed this assumption
analytically. Through a wave propagation study, Lang[4] determined experimentally the aniso­
tropic elastic moduli of bone material, while Yoon and Katz[5] established theoreticaIly the
hexagonal characteristics of bones. The viscoelastic properties of wet cortical bones were
determined by Lakes et al. [6]. Gottesman and Hashin [7] analysed the viscoelastic behaviour
of bones on the basis of their microstructure. Although in reality the microstructural com­
position of bones seems to be inhomogeneous, a gross bone can be approximately regarded as a
homogeneous continuum. In fact, the present athors [8], in a separate communication, reported
that the wave propagation characteristics of bone media are not seriously affected due to
inhomogeneity. The problem of torsional wave propagation in tubular bones by accounting for
their dissipative and piezoelectric effects was the subject of discussion in that paper.

The problem of wave propagation in a bone medium treated as a hexagonal material was
studied by Vayo and Ghista[9]. But they did not account for the material damping and the
piezoelectric effects of bone tissues. The purpose of the present study is to examine the effects
of these material properties on the wave propagation characteristics. The analysis presented
here is suitable for illustrating the two-phase behaviour of the osseous tissues described above.
The study corresponds to a situation in which both the endosteal and periosteal surfaces of the
tubular bone under consideration are maintained at zero potentials and free of tractions. While
the dispersion relation is derived for the general case, the numerical computational work is
carried out for the particular case when the bone piezoelectricity is not taken into acCOUnt. It
has of course been concluded that the piezoelectric properties may not have an appreciable
effect on the mode of propagation of waves in an osseous medium, at least under the purview
of a plane wave approximation. Further, due to non-availability of requisite experimental data,
the computational work is based on the consideration of a compact bone.
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2. ELASTO-DYNAMICS OF THE AX!·SYMMETRIC WAVES IN A

PIEZOELECTRIC MEDIUM POSSESSING DAMPING MATERIAL BEHAVIOUR

As already mentioned, Fukada and Yasuda[10] seem to be first to illustrate the
piezoelectricity in bone tissues. They carried out experiments by taking different specimens of
dry bones. During the last two decades, the roles of piezoelectricity in remodelling of bones,
fracture healing, and recovery from different bone diseases, have been the subject of quite a
few investigations. Saha and Lakes[ll] remarked that an attempt towards correlating the
experimental findings of the wave propagation velocities and amplitude attenuation, with the
conclusions based on analytical studies is quite useful, especially when one wants to confirm a
particular pathological state.

In this section, we present the solution of the elasto-dynamic equations of the axi-symmetric
waves, based on the hexagonal-polar constitutive relations (see [12]). Let us consider an axial
harmonic wave propagating along the longitudinal axis of the bone modelled as a two-layered
cylindrical shell. The longitudinal axis is supposed to correspond to the material axis of
hexagonal polar symmetry. With the axis of z along the longitudinal axis of the tubular bone, let
(r, 8, z) be the coordinates of a representative material point of the specimen. Due to the
propagation of the axi-symmetric wave, the motion of the constituent particles undergo
vibrations symmetric with respect to the z-axis, and consequently any wave field parameter
(e.g. particle displacement, stress, strain, electric fields, electric displacement, electric potential)
which is independent of 8 can be represented by a space~time dependent function, f(r, z, t)
given by

f(r, z, t) = f(r) exp [i( wt - kz)] (I)

in which w is the circular frequency and k the wave propagation constant.
Now the constitutive relations for the stress (Tm ), strain (Sn), electric field (£,) and the

electric displacement (Dd for a piezoelectric medium, in general, are given by (see [13J):

(2)

(3)

in which

I::; k, I::; 3,1::; m, n ::; 6

and the elastic moduli matrix Cm", the piezoelectric matrix ekrn and dielectric matrix for bone
are given in Giizelsu[l2]. In the cylindrical polar co-ordinate (r, 8, z) system, Tm stands for the
stress components T", T98, Tzz> Tez, T,z and Tre, while Sn for the strain components S", See, Sw
Se" S" and Sre with m = 1,2,3,4,5 and 6 respectively. The displacement components along
r-, 8- and z-directions are assumed to be u" Ue and Uz respectively. The strain displacement
relations as well as the equilibrium equations governing the motion of the cylindrical medium
are given in [14]. In general, the elements in the piezo-electric matrix and the dielectric matrix
like the elastic moduli in a viscoelastic medium are frequency-dependent[l5]. But throughout in
this analysis ekm and Elk are considered as frequency-independent, whereas the frequency­
dependence of Crnn would be considered in the following section. It may, however, be
mentioned in this connection that the elastic moduli are almost independent of frequency in the
ultrasonic range [6].

The electric field as also the electric displacement induced by an acoustic wave propagating
through the bone medium must satisfy the Maxwell equations of electrodynamics, as well as the
constitutive relations (2) and (3). Since the acoustic waves are much slower than the elec­
tromagnetic waves, one may consider induced magnetic field quantities to be zero[13]. Hence
according to this quasi-static approximation,

V·D=O (4)
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and

VXE=O.

This last equation asserts the existence of a potential function v, such that

E=-Vv.

In cylindrical polar co-ordinates, the eqn (6) reads

As a wave field parameter, v also satisfies equation (1) and consequently

E8 =O.
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(5)

(6)

(7)

(7a)

Now using the constitutive relations (2) and (3) in the equations of motion and Gauss'
divergence equation (7) together with the other relevant relations we obtain the following set of
partial differential equations

with

a~ al/J 2 a2 1 a
Ur = T' "8 = T' V =~+- -;-(Jr (Jr (Jr r or

a = Clh A = pw2
_ k2C..... B = - ik(C13 + C....)

C = - ik(e~, +eIS), b = C44, D=pw2- k2C)), d = elS

F = - k2
e)3' e =- ikel.j, / = - Ell, G = k2En, h = C66

(8)

(9)

(10)

(11)

(12)

and ~, 1/1. Uz and v are the r-dependent parts of the corresponding wave field parameters
satisfying 'eqn (1). From the system of eqns (9)-(11) we obtain the following differential
equation through a process of elimination

i.e.

(13)

(13a)

in which -,\ ~(i =1,2,3,4) are the roots of the biquadratic equation

(13b)
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RM +SL + rm + sl b _ RN +SM + TL +m + sm + tl
ao ::::: RL + rl ,0 - RL + r/

c - SN +TM + sn +1m d _ NT +nt
0- RL + rl ,0 - RL + r/ •

L::::: ad,M:::: aF+ Ad-BC,N::::: AF,

I::::: ab, m:::: Ab + aD- B2
, n:::: AD,

R :::: h(Bd - bC), S::::: h(BF - CD) +A(Bd - bC), T:::: A(BF - CD)

r::::: h(Cd - Bf), s ::: A(Cd - Bf) + h(FC - BO) +Be2
, I :::: A(FC - BO). (4)

Solving (13a) for any of the field variables, say "z' we have

in which

4 4

Uz :::: L Uzj::::: L (AjZo(VjT) +BjXo(v;r»
j=1 j=1

Vj :::: lA.j~1I2,

Zo(vjr):::: Jo(v;r) or Io(vjr) according as A.? > 0 or <0,

Xo(vjT):::: MVjT) or Ko(vjT) according as A/>O or <0,

(I5)

Jo, Yo, and 10, Kobeing Bessel functions and modified Bessel functions of the first and second
kinds, all of order zero;

(Ai' Bj)(j :::: 1,2. 3,4) denote eight arbitrary constants.

The set of eqns (13) indicates that the field parameters u" lp, '" and v are linearly dependent on
one another, so that one can write

(16)

The constants bj, Cj, dj(j ::::: 1,2,3,4) are evaluated if the expressions (16) are substituted into the
set of differential equations taking (15) into consideration. We thus have

(7)

and

Cj :::: - B~l [(bAj - D) +(dA? - F)dj ].

In order to incorporate the effect of the material damping of the bone specimen, the
coefficients Cm• in the constitutive relations (2) are to be regarded as functions of the
time-derivative Da a/at. Bulanowski and Yeh[16] have shown that in the case of harmonic
waves propagating through a viscoelastic continuum, the elastic moduli (Cm.) in the elastic
solutions are to be replaced by the complex functions Cm.(iw), (i :::: V:]).

3. WAVES PROPAGATING THROUGH A TUBULAR BONE

Let us now restrict our attention to a long tubular bone having rl and rlas the endosteal and
periosteal radii respectively. We define the interface of two--phase material by r::::: R. For
the purpose of discussing the propagation of axi-symmetric waves through the bone specimen,
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the tubular surfaces being assumed to be traction-free and to be maintained at zero potential. we
can write

T" = T,z = T,o = v = 0 on r = rio r2' (18)

Further, in conformity with the assumption of the continuity of the displacement and stress­
components. the electric potential as also the electric displacement, one can write

u~1) = U~2), u~1) = U~2), u~1) = U~2),

T~~) = T~;), T~) = T~), T~) = T~)

vO) = V(2), D~I) = D~2) on T = R
(19)

(see [9, 14)) in which the superscripts (1) and (2) refer to quantities in the two different layers of the
tubular bone specimen under consideration.

By making use of (2}-(4) together with (1S}-(17) in (18) and (19) one can obtain a set of
sixteen linear algebraic equations involving sixteen unknowns. Eliminating these unknown
quantities, one can obtain the dispersion relation in the form of a determinant of order 16,
equated to zero; the elements of the determinant, Due are shown in Appendix. By solving this
equation one can determine the wave propagation constant, therefrom the wave speed as also
the attenuation of the waves due to the damping material behaviour of osseous tissues.

If bone piezoelectricity be ignored, the eighth order partial differential equations (13) reduce
to the fourth order ones given by

(20)

with

(21)

The solution of these equations can be written as

where the symbols Vj. Zo, and Xoretain their earlier definitions and

G 'k . h C13 +C44
j = -I ej, Wit ej = \ 2 A'

allj -

In this case, the dispersion relation for a compact bone is given by

Ildnmll = 0

where dnm, the elements of a determinant of the fourth order, are given as

d - 2E W"( )+CI2 Em W'f ) CUUff )nm - 1J.m m 1J.mr -C - O\1J.mT +-C "'O\1J.mr ,
11 r 11

(n = 1,3; m = 1,2,3,4)

(in this case n = 1 refers to r = r\ and n = 3 to r = r~

dnm = 1J.mWO<1J.mr)[l- k 2Em], (n = 2,4, m = 1,2,3,4)

(here n = 2,4 refer respectively to r = rio r2) with

(23)

(24)
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m = 1, 2 refer to Wo=Zo and m =3,4 to Wo=Xo. (25)

The prime over a function denotes differentiation with respect to its argument.

4. NUMERICAL RESULTS AND CONCLUSIONS

Due to non-availability of all the requisite experimental data necessary for characterizing
the two-phase material behaviour of bones, the computational work has been rest. icted to a
compact (single-layered) bone with use of following data (see[9, 17])

p =2000 kg/m3, ClI =2.38, Cn =: 3.34, Cn =1.2, CI2 = 1.02

CfX, =.68, all in 1010 N/m2
; 'I =.0038 m, '2/'1 =: 1.7.

Lakes et al.[6], on the basis of their experimental observations remarked that the elastic
moduli and the loss tangents could be considered almost frequency-independent at the
ultrasound range; so in this range, the viscoelastic effects may be incorporated on replacing the
elastic constants Cmn by Crnn (1 + i~); 8 being the loss tangent. For w = 211" X 1O~ rads/sec., the
value of 8 approximately equals to 8 = 0.01 [6]. Keeping in mind that for a viscoelastic material,
k is a complex quantity, the real part being the representative of the wave propagation constant
and imaginary part that of the attenuation coefficient, and using the above mentioned values of
wand 8, the dispersion relation is programmed on a high speed digital computer for determining
k. The dispersion equation being transcendental will possess an infinite number of roots. The
first few values of the computed roots are presented in Table 1. For the purpose of comparison,
the results presented by Vayo and Ghista[9] are also shown in the table. They did not account
for the bonepiezoelectricity as well as the energy dissipation in their analysis which was carried
out by an entirely different procedure. Further, their results are restricted to "very short" wave
length (asymptotic expressions being used for the Bessel functions) and as a result the
traction-free conditions of the periosteal surface of the long bone specimen could not be made
use of. It may be noted that the values of the wave propagation constant obtained by us for the
first and second modes are closed to the value obtained by Vayo and Ghista[9] for the first
mode, while our computed values for the third and fourth modes correspond to the value
obtained by them for the second mode. This observation may be attributed to the occurrence of
satellite modes in the vicinity of principal modes. The so called satellite modes can be detected
only when, for an analytical study, the analysis is performed by taking into account the finer
aspects (both physical and mathematical) of the problem.

It has been remarked in Sapriel [13] that for a plane wave propagation through a piezoelectric
medium, the wave characteristics can be estimated from the corresponding solution valid for a
non-piezoelectric medium if the elastic moduli Crnn are replaced by their modulated values, C~n'

For the plane axial waves, following Sapriel[13], we can write

C I =C + e3me3n
mn mn .

Ell

:fable 1. Values of the wave propagation constants and attenuation coefficients at different modes

Mode No. I (j) 1 2 3 4 5

Wave propagation 186 352 4.2

constant (K
j

in m-1 )

(Vayo and Ghista, 1971)

wave propagation 145 155 312.5 315.5 416.5
-1)constant {Kj in m

{Present analysis'

Attenuation coefficient, 0.79 0.698 0.169 0..l67 0.103

(Y j in m-l ,

(26)
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In that case, the amplitude of the electric potential Vo induced by the travelling waves, is
proportional to the amplitude of the axial displacement uz

o so that

(27)

For a bone medium, e,1 =en =63.4 x 1O-~ C/m2
, e" =54.8 x 1O-~ C/m2 and EJJ =1.33 x 1O-~ C/vm

(cf Guzelsu[12]). Then the correction term in (26) is of the order of 104 N/m2
, whereas the elastic

moduli are of the order of lO IO N/m2
•

In a situation as this, C':'n =Cmn• This asserts that for plane wave propagation, the wave
characteristics for a piezoelectric medium are almost identical to those for a corresponding
non-piezoelectric medium. Thus for points in a long bone specimen, which are at moderate
distances from the origin of waves and the surfaces of discontinuity, our results in Table 1, may be
considered as nearly equal to those obtained by incorporating bone piezoelectricity, the induced
elastic field being determined by (27).

S. REMARKS

In a recent study of Saha and Guzelsu[18], the anti-symmetric electromechanical wave
propagation was considered by treating bone as a hexagonal polar material exhibiting piezo­
electric effects; however, the experimentally established dissipative material behaviour of
osseous tissues was not paid due attention by them. In solving the problem of wave propagation
through a hollow piezoelectric cylinder as the representative of a tubular bone specimen, the
authors have ignored the piezoelectric coefficients in the constitutive equations. This led the
derivation of the dispersion equation considerably simple. Such dispersion equations had
already been analytically obtained and numerically solved by Mirsky[19], but Saha and
Guzelsu[18] have numerically solved this dispersion relation for a particular bone specimen to
obtain useful results for the purpose of correlating them with the findings of certain experiments
performed with similar bone specimens. By solving the electromagnetic boundary conditions, the
values of the external magnetic field induced by the travelling antisymmetric wave have also been
obtained. In fact, this was the principal aim of the authors in this analytical study. It has been
claimed that their theoretical results closely agree with the experimental ones performed with
magnetic sensors.

The purpose of our analysis is to incorporate the viscoelastic as well as the piezoelectric
properties of osseous tissues in the problem considered by Vayo and Ghista[9]. As reported by
Chan et al, [20], the ultrasound wave propagating through a viscoelastic bone medium can result
in a temperature rise (a knowledge of which is useful in obtaining criteria for dosage) which can
be measured if we have an idea of the wave attenuation coefficients. A consideration of bone
piezoelectricity in the constitutive relations makes the dispersion relation very much com­
plicated, even for the simple axisymmetric waves that are considered in this paper. This is due
to the fact that even for an axisymmetric analysis of the problem of wave propagation through
a piezoelectric cylindrical shell one cannot assume the circumferential displacement, u. to be
zero (see [12]), which is exactly the case in[18] with n =O. Because of this difference in
analytical approach one cannot compare the results of the present study with those of Saba and
Giiz.eIsu[18], though an axisymmetric motion may be taken as a particular case of general
antisymmetric motion.

The p! .ncipal aim of providing the computational results for a simple case, in the present
analysis, is to demonstrate that under a similar situation it gives the results which are in close
agreement with those in[9]. From the present study, one may conclude that the viscoelastic and
piezoelectric effects in bone media can be looked upon as small perturbation effects to a general
elastic material behaviour. Numerical solution of the general dispersion relation by considering
all such perturbation effects may certainly be obtained. But it has already been conjectured that
it would only increase the number of the so called 'satellites'.

The magnetic field induced by a travelling torsional wave in tubular bones was recently
discussed by the present authors [8].
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APPENDIX

The elements of the 16th order delerminant D,. arc defined below.

(/ = I, 5; k = I. 2, 3, 4, 5. 6. 7. 8; I = 1 refers to j = 1 and r = r,; / = 5 to j = 2 and r = r,)
OJk = O. 1= 1. 5; k = 9.10..... 16.
OJ. =[C~(I- ikC~1+eWd::!IWb(v~lr) (/ = 2.6; k = 1.2 8; 1=2 refers to j = 1. r= r, and I =6 to j = 2. r = r,)
OJ. = 0 (/ = 2.6; k = 9,10 16)

O,k = Cl!Jb~)[ WO(v::!r) - wO(;~)r)] (/ = 3.7; k = 1.2 8;

1=3 refers to j = 1. r = r, and I = 7 to j = 2. r = r2)
OJ. = OU =3, 7; k = 9, 10.... 16).
O,k = d~)Wo(v::!r)(I = 4. 8. k = I. 2.... 8; I = 4 refers to j = I. r = r, and I = 7to j = 2. r = r2)
O,k = 0 (/ = 4. 8; k = 9. 10, ..... 16).

C(I)C1l1 W' (lIR
D = C(I)C(llW" IIIR)+ 12 m O(V m ) - ik(C I11 + e1l1d(ll\Wo(v(llR) (/ = 9 k = I 23 8)

Ik 11 m (J\V m R 13 31 '" } m " • I····

[
C(2ICI2IW" 121R) ]

OJ.=- CWC~)Wo(v~)R)+ 12 m 2 IIIV
m -ik(CW+eWd~»)Wo(v~IR) (/=9.k=9.10.... 16)

[C(l)~ 'kC(I) (I)d(\)l W'( (\)R) (1- 10 k - I 2 8)OJk = ... 1- I m +e IS m 0 V m , - • - , •...

Out = -rC~(I-ikC~~+eWd.;~WO(v~)R).(1 = lO.k =9.10 16)
Out = - C~b~)(WQ(v~)RI- WOlv~)R)IRI. (I = 11. k = 1,2 8)
OJk = - C~bl:'(WO(v~)R)- WOlv~'R)/RI. (/ = 11, k = 9.10 16)
OJk = d~IWO(v~)R). (/ = 12. k = 1.2 8)
Out = - d~)Wolv~)R). (/ = 12, k = 9.10 16).
O,k = [- ike\"b~)+ eW - ikeWC~J + E\'id~:ll Wb(v~IR). (I = 13. k = 1.2 8)
O,k = - [- ike\~b~l+eW- ikeWC~)+ E\~ld~11 WO(v~)R) (I = 13. k = 9, 16)
OJk = Wo<v~)R). (I = 14, k = 1.2 8)
Out = Wolv~)R)(1 = 14. k = 9, 16)
Out =C~)Wolv~)R)(1 =15, k =1, 2, 8)
Drk = - C~)WO(v~R)(1 = 15. k = 9, 16)
Out = b~)Wo(v~)R)(1 = 16, k = 1 8)
Out = - b~IWo(v~)R)(l = 16. k = 9 16).

The prime denotes differentiation with respect to r; and in all the above case~

k" 1. 5. 9. 13 refer to m = 1. k = 2. 6. 10, 14 to m ,,2. k = 3. 7. 11. 15 to m = 3. k = 4. 8. 12. 16 to m = 4; k = 1. 2. 3. 4. 9. 10.
11. 12 refer to Wo= Zoo and k = 5. 6, 7. 8. 13. 14. 15. 16 to Wo= Xo.


